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ABSTRACT
The discovery of the Ðrst extrasolar planets, with masses in the range of D0.5 MJup (MJup\ Jupiter

mass) to D3 demands a reevaluation of theoretical mechanisms for giant planet formation. HereMJup,we consider a long-discarded mechanism, forming giant planets through the gravitational instability of a
protoplanetary disk. Radiative hydrodynamical calculations of the thermal structure of an axisymmetric
protoplanetary disk with a mass of D0.13 (inside 10 AU), orbiting a solar-mass star, predict that theM

_outer disk may be cool enough (D100 ^ 50 K) to become gravitationally unstable. This possibility is
investigated here with a fully three-dimensional hydrodynamics code. Growth of signiÐcant non-
axisymmetry occurs within a few rotation periods of the outer disk and can result in the formation of
several discrete, clumps in \103 yr. These giant gaseous protoplanets (GGPPs) are gravi-multiple-MJuptationally bound and tidally stable and so should eventually form giant planets. Modest-sized solid cores
may form through dust grain growth and sedimentation prior to the centers of the GGPPs reaching
planetary densities. The inner disk remains nearly axisymmetric throughout these phases, suggesting a
scenario in which the formation of terrestrial planets occurs slowly through collisional accumulation in
the hot inner nebula, while rapid formation of GGPPs occurs in the cooler regions of the nebula. Falling
disk surface densities would restrict GGPP formation to an annulus, outside of which icy outer planets
would have to form slowly through collisional accumulation. GGPP formation occurs for both locally
isothermal and locally adiabatic disk thermodynamics, provided that the Toomre Q stability parameter
indicates instability Low-order modes, especially m\ 1 and 2, are dominant. Provided that a(QminB 1).
means can be found for inducing massive protoplanetary disks to undergo the GGPP instability (e.g.,
clumpy accretion of infalling gas onto a marginally stable disk), the GGPP mechanism appears to be a
prompt alternative to the long-favored but protracted core accretion mechanism of giant planet forma-
tion. Observations hold the promise of deciding which of these two mechanisms is preferred by young
stars.
Subject headings : accretion, accretion disks È hydrodynamics È solar system: formation È

planetary systems

1. INTRODUCTION

The discovery of the Ðrst conÐrmed extrasolar planet
& Queloz et al. and the rash of(Mayor 1995 ; Marcy 1997)

subsequent detections & Marcy(Butler 1996 ; Gatewood
et al. et al. et al.1996 ; Butler 1997 ; Cochran 1997 ; Noyes

have produced long-awaited information about the1997)
outcome of the planet formation process around other
solar-type stars. Because these unseen companions have
masses comparable to that of Jupiter and nearly(DMJup)circular orbits (with one understandable exceptionÈsee

Touma, & Tremaine Krymolowski,Holman, 1997 ; Mazeh,
& Rosenfeld they are generally inferred to be gas1997),
giant planets similar to Jupiter and Saturn. Compared to
the null results of just a few years ago et al.(Walker 1995),
we now know that extrasolar giant planets do exist, at least
around a fraction of nearby stars. A reexamination of the
possible mechanisms for giant planet formation in the light
of these and other recent advances thus seems timely.

The leading model of giant planet formation is core acc-
retion Core accretion is pre-(Mizuno 1980 ; Pollack 1984).
dicated upon two distinct steps, (1) the formation of a
roughly D10 core and (2) the accretion of considerableM

^nebular gas by the solid core. The D10 core is assumedM
^to form through the same process of collisional accumula-

tion of planetesimals and planetary embryos that led to the
formation of the terrestrial planets (see, e.g., Wetherill 1990).

Several problems have become apparent with the core acc-
retion model, with regard to timescales and core masses.

The time required to form a D10 core is estimated toM
^be on the order of 106 yr even in an opti-(Lissauer 1987),

mistic scenario in which the disk surface density is increased
between 5 AU and 10 AU, the gravitational enhancement of
the collisional cross section for accumulation is maximized,
and an inÐnite reservoir of feedstock is assumed to be avail-
able et al. Recent models suggest that up to(Pollack 1996).
an additional D107 yr is required for a D10 core toM

^accrete D300 of nebular gas et al. TheM
^

(Pollack 1996).
total time thus falls at the upper end of the estimated life-
times of circumstellar disks, D105È107 yr Edwards,(Strom,
& Skrutskie If the disk gas disappears prior to the1993).
formation of 10 cores, the cores will be unable toM

^accrete the H and He gas needed to form the envelopes of
the gas giant planets like Jupiter and SaturnÈinstead, Ura-
nuses and Neptunes would result.

Another problem for the core accretion model has come
from a new generation of models of the interiors of Jupiter
and Saturn et al. et al.(Chabrier 1992 ; Guillot 1994 ;

Gautier, & Hubbard Using improved equa-Guillot, 1997).
tions of state for hydrogen and other reÐnements, it has
been found that the observational constraints could be
matched with considerably smaller core masses than had
previously been thought to be necessaryÈbetween 0 and 12
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for Jupiter and between 1 and 13 for Saturn. Pre-M
^

M
^vious estimates (see, e.g., placed the coreStevenson 1982)

masses at between 10 and 30 for Jupiter and between 15M
^and 25 for Saturn. If the true core masses of Jupiter andM

^Saturn lie at the lower end of these ranges, D1 then theM
^

,
cores may not be massive enough to capture massive
gaseous envelopes. found the critical coreMizuno (1980)
mass to be D10 independent of location in the disk,M

^
,

and this result was taken at the time as strong evidence for
the core accretion model.

Additional difficulties may be raised as well.
found that even with optimisticWeidenschilling (1997)

assumptions for the core accretion model et al.(Pollack
a detailed calculation of the Ðrst step (runaway accre-1996),

tion of planetesimals by a growing planetary embryo)
showed that accretion took longer than expected and
stalled with the formation of 2È3 planetary cores, wellM

^below the desired mass of D10 M
^

.
Given these problems with the core accretion model, it

seems prudent to consider other mechanisms for giant
planet formation. One such model was proposed by Kuiper

and advocated by gaseous(1951) Cameron (1978)Ègiant
protoplanet (GGPP) formation. In the GGPP model, the
solar nebula must be massive and cool enough to become
gravitationally unstable. The gravitational instability is
then envisioned to lead to the formation of self-gravitating
clumps of gas and dust, called GGPPs. Because the insta-
bility occurs over a dynamic timescale (about an orbital
period), GGPP formation can occur even during the abbre-
viated lifetime of the most ephemeral circumstellar disk.

The GGPP mechanism has been rejected historically
because it seemed to be incapable of explaining the large,
startlingly similar core masses of the giant and outer
planets. The newly revised core masses for the giant planets
have at least partially removed this objection, and the dis-
covery of extrasolar planets with masses signiÐcantly
greater than that of Jupiter suggests that a mechanism
capable of forming massive giant planets is at work.
However, a thorough investigation of GGPP formation has
not yet been performed, so the mechanism has not been
subjected to the same degree of scrutiny that has uncovered
certain Ñaws in the core accretion model. The purpose of
this paper is to initiate such an investigation, in order to
discover the advantages and disadvantages of the GGPP
mechanism.

used a radiative hydrodynamics code to cal-Boss (1996)
culate a suite of axisymmetric (two-dimensional) solar
nebula models with a common thermal characteristic : a
relatively hot (1000 K) inner nebula, surrounded by a rela-
tively cool (100 K) outer nebula. In the model with a disk
mass of 0.13 (inside 10 AU), the surface density of theM

_disk was close enough to the critical value for gravitational
instability that it appeared likely that such(Toomre 1964)
disks might be marginally gravitationally unstable in their
outer regions. The model serves as the basisM

d
\ 0.13 M

_for the three-dimensional calculations of GGPP formation
presented here.

2. NUMERICAL METHODS

The disk models were calculated with the three-
dimensional hydrodynamics code described in detail by

& Myhill The code calculates Ðnite-di†erenceBoss (1992).
solutions of the equations of hydrodynamics and gravita-
tion for a neutral, inviscid gas. The code was designed to be

second-order accurate in both space and time through the
addition of temporal corrections to the advection terms and
a predictor-corrector treatment for body forces. The code
was modiÐed (as in to use the van Leer monot-Boss 1997a)
onic interpolation formula Leer to interpolate(van 1977)
interface Ñuxes for both the density and the speciÐc
momenta or energy (the interface Ñux involves the product
of these two quantities). In the original version of the code

& Myhill only the interface density was(Boss 1992),
obtained by van Leer interpolation, and the speciÐc
momenta and energy were obtained by averaging the adja-
cent cell center values. While the original code is formally
more accurate, the modiÐed code is considerably more
stable numerically, permitting the use of signiÐcantly larger
time steps (up to of the Courant time step).D12Spherical coordinates are used, with a radial grid (N

r
\

50) that is uniformly spaced between 1 and 10 AU and a h
grid n/2 º h º 0) that is compressed into the mid-(Nh\ 23,
plane to provide adequate vertical resolution of the disk

at the midplane). The / grid is uniformly spaced(*h\ 0¡.3
with for most models, leading to InNÕ\ 64 */\ 5¡.6.
general, no symmetry is assumed in the / variable, so that
in a Fourier decomposition (eimÕ) both even and odd m
modes can grow. The Poisson equation for the gravitational
potential is solved by a spherical harmonic expansion(Y

lm
)

including terms up to l, m\ 16.
The inner edge of the disk occurs at 0.5 AU, the boundary

between the disk and the central protostar. In order to
prevent the growth of spurious noise in the inner disk
without resorting to a punitively small time step, the inner
disk was kept artiÐcially axisymmetric by imposing v

r
\

and These ““ inner boundary conditions ÏÏvh\ 0 vÕD vÕ(/).
permitted the use of time steps much larger than otherwise
possible. In order to maintain numerical stability, it was
also found to be necessary to damp and preventv

r
[ 0

(motions away from the protostar and the disk mid-vh\ 0
plane, respectively) throughout the entire disk. The outer
boundary conditions were deÐned on a constant volume
sphere of radius 10 AU, where and was forced tov

r
\ 0, vhremain positive. The boundary density was also Ðxed at its

initial value. This has the e†ect of adding a small amount of
mass to the disk during the evolution (typically a few
percent), because the mass that Ñows inward toward the
protostar (which should lead to a lower boundary density)
is then e†ectively replaced by new mass on the boundary.
This was done in order to make the disk respond as if it
were just the inner portion of a disk of considerably larger
radial extent.

Considering the importance of the outer boundary condi-
tions for the growth of nonaxisymmetry in disks (see, e.g.,

Ruden, & Shu et al.Adams, 1989 ; Shu 1990 ; Heemskerk,
Papaloizou, & Savonije Shu, & Adams1992 ; Ostriker,

it is worthwhile to examine the adopted outer bound-1992),
ary conditions. Because on the outer boundary, anyv

r
\ 0

radial momentum that is incident on the outer boundary
from inside the disk is added to the boundary cell, where it
immediately vanishes. Outward-moving radial momentum
is thus absorbed on the outer boundary, and no momentum
can enter the grid from outside the spherical volume. In
order to have a reÑecting outer boundary condition,
outward-moving radial momentum in 1 time step would
have to be reÑected and converted to inward-moving radial
momentum in the next time step, which is clearly not the
case in the present models. When reÑecting outer boundary
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conditions are used, as might be expected to be appropriate
for a disk with a sharply deÐned outer edge, the m\ 1
eccentric instability occurs even for disks in which the

stability criterion is substantially exceeded,Toomre (1964)
Q[ 1 et al. et al. When the outer(Adams 1989 ; Shu 1990).
boundary is assumed to be absorbing rather than reÑecting,
the m\ 1 instability is suppressed et al.(Adams 1989 ; Shu
et al. In contrast, the inner disk boundary conditions1990).
were found to have little e†ect on the instability. The use of
absorbing outer boundary conditions in the present calcu-
lations is thus very conservative, in that any perturbation
growth that occurs will not be dependent on the assump-
tion of a sharp, reÑecting disk edge.

The central protostar is represented as a gravitating point
mass with For most models, the location of theM

s
\ 1 M

_
.

protostar was Ðxed at the center of the spherical coordinate
system. As a result of the growth of odd m modes, the
location of the center of mass of the disk eventually
departed from its initial position, though the departure is
generally quite small compared to the radius of the inner
edge of the disk (0.5 AU). In order to rigorously preserve the
location of the center of mass of the combined protostar/
disk system at the origin, some models allowed the proto-
star to wobble in response to the growth of odd m models in
the disk Cassen, & Steiman-Cameron The(Tomley, 1991).
wobbling protostar can then act back on the disk, serving as
an additional source of nonaxisymmetry et al.(Adams
1989).

The two-dimensional disk model used to(Boss 1996)
deÐne the initial conditions for the present three-
dimensional models required Eddington approximation
radiative transfer to determine the disk temperature proÐle.
However, the three-dimensional models cannot a†ord a
similarly rigorous treatment of radiative transfer because of
the need to evolve the models for many orbital periods.
Hence while the three-dimensional models start with the
disk temperature distribution determined by the two-
dimensional radiative transfer code, the subsequent evolu-
tion of the disks is taken to be either locally isothermal or
adiabatic. That is, the temperature at each numerical grid
point is either held Ðxed (locally isothermal) or is updated
after each time step according to the adiabatic prescription
T P oc~1, where o is the local gas density and the gas pres-
sure depends on the density as p P oc. The adiabatic expo-
nent c is 7/5 for molecular hydrogen.

The isothermal assumption (c\ 1) would be valid if any
compressional energy produced by the growth of disk non-
axisymmetry is quickly radiated away. The opposite
assumption is the adiabatic assumption, where the disk
retains all of its compressional energy and is unable to cool
by radiation. Realistic disk behaviors presumably lie some-
where in between the two extremes of c\ 1 and c\ 7/5.

Each three-dimensional model was evolved for D106
time steps. Given the spatial resolution of the models (70,
451 active grid points), a typical model required several
months to run on a dedicated DEC Alpha workstation.

3. INITIAL CONDITIONS

All of the three-dimensional models presented here were
based on the same initially axisymmetric disk (Boss 1996)
with a mass of 0.13 between 0.5 and 10 AU. TheM

_suspected protoplanetary disks inferred to be orbiting
around T Tauri stars typically have total masses of D0.02

while they range in mass from D0.001 to D1M
_

, M
_

et al. Most of this mass is inferred to lie at(Beckwith 1990).
large radii, though because the innermost disks are optically
thick at millimeter wavelengths the amount of mass in the
inner regions may well be underestimated. As a conse-
quence, it is unclear if any of the T Tauri disks contain as
much as D0.13 within D10 AU, making the presentM

_models perhaps unrealistically massive for T Tauri stars.
However, the young stellar objects that predate the T Tauri
star phase presumably have much more massive disksÈ
indeed, it is hard to avoid the formation of a massive disk
from the collapse of a rotating molecular cloud core (see,
e.g., Bodenheimer, & Laughlin The presentYorke, 1993).
models might then apply better to earlier phases of proto-
stellar evolution.

It is also worthwhile to compare the assumed disk mass
with that obtained by restoring the solar systemÏs planets to
solar composition. found theWeidenschilling (1977)
resulting ““ minimum mass ÏÏ for the solar nebula to lie in the
range 0.01È0.07 within a radius of about 36 AU. TheM

_
,

amount of mass inside 10 AU ranged from D0.005 to
D0.05 While these estimates are only lower bounds onM

_
.

the nebular mass, they are signiÐcantly lower than the 0.13
assumed in the present models. The applicability of theM

_present models to the formation of our solar system then
requires that the solar nebula experienced a phase with an
inner disk mass at least 2È3 times that of the minimum mass
nebula.

The initial radial density proÐle in the disk midplane is
chosen in part to minimize the contributions ofo

m
P r~3@2,

gas pressure to non-Keplerian rotation If the(Boss 1993).
disk had a vertical height that increased linearly with
orbital radius, then the surface density proÐle would be
p P r~1@2. While this is approximately true, the detailed
vertical hydrostatic balance leads to a surface density that is
not a simple power law, but that varies approximately as
p P r~0.6 inside 5 AU and as p P r~1.3 outside 5 AU. Both
of these are somewhat Ñatter than the p P r~3@2 proÐle
derived by and used by etWeidenschilling (1977) Beckwith
al. However, noted that p P r~1(1990). Cameron (1995)
characterizes steady viscous accretion disks with a constant
a parameter. suggested that the solar nebulaLissauer (1987)
may have had p P r~1@2 out to JupiterÏs orbit but then
dropped o† faster than p P r~1 outside SaturnÏs orbit, a
situation very similar to that of the present models. Unfor-
tunately, interferometric observations of suspected proto-
planetary disks are unable to constrain surface density
proÐles inside radii of D50 AU, and even at larger radii,
simple power-law disk models do not seem to Ðt the obser-
vations Carlstrom, & Hills Theoretical calcu-(Lay, 1997).
lations of presolar nebula collapse are not yet able to
predict surface densities inside D5 AU et al.(Yorke 1993).
Given these uncertainties, the assumed p(r) of the present
models seems quite acceptable.

The vertical density proÐle of the disk was calculated at
each radius assuming hydrostatic equilibrium of an adia-
batic gas. Outside the disk, the initial density falls o† with
radius as o P r~3@2, and the residual cloud envelope is
assumed to be infalling toward the disk midplane, as speci-
Ðed in Boss Mass was assumed to be accreting(1993, 1996).
onto the disk from the residual presolar cloud at a rate of
D10~6 yr~1, as is indicated by observations of youngM

_stellar objects et al.(Ohashi 1996).
The three-dimensional models generally are started with

a nonaxisymmetric perturbation to the two-dimensional
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FIG. 1.ÈMidplane temperatures assumed as initial conditions for the
three-dimensional models. Solid dots are the calculated proÐle for theT

m0.13 disk from leading to a temperature at 10 AU ofM
_

Boss (1996),
K. Solid lines show variations in the outer disk temperatureT10 \ 100

proÐle employed in di†erent three-dimensional models, with T10\ 500,
400, 300, 200, 150, 100, 75, and 50 K.

density distribution h) of the formo2D(r,

o
i
(r, h, /) \ o2DM1 ] a

m
[(ran] cos (m/)]N ,

where is the amplitude of a perturbation of mode ma
m

TABLE 1

INITIAL CONDITIONS AND RESULTS FOR m\ 2 PERTURBATION MODELS

T10 Number t
fModel c (K) Qmin Result of GGPPs (yr)

m . . . . . . 1.0 50. 0.66 Unstable 3 497.
n . . . . . . 1.0 100. 0.94 Unstable 2 412.
o . . . . . . 1.0 150. 1.1 Marginal 2 656.
t . . . . . . . 1.0 200. 1.3 Marginal . . . 432.
p . . . . . . 1.0 300. 1.6 Stable 0 363.
r . . . . . . . 1.0 400. 1.9 Stable 0 39.3
q . . . . . . 1.0 500. 2.1 Stable 0 27.3
x . . . . . . 1.1 50. 0.69 Unstable . . . 37.6
v . . . . . . 1.1 100. 0.98 Unstable 2 518.
w . . . . . . 1.2 50. 0.72 Unstable 4 316.
u . . . . . . 1.2 100. 1.0 Unstable 2 464.
c . . . . . . . 1.2 150. 1.3 Marginal 2 690.
d . . . . . . 1.2 200. 1.5 Stable 0 752.
y . . . . . . 1.4 50. 0.78 Unstable 2 520.
z . . . . . . . 1.4 75. 0.96 Unstable 2 702.
s . . . . . . . 1.4 100. 1.1 Marginal . . . 566.

(either m\ 1 or 2, in general) and ran is a random number
in the range [0, 1]. The amplitudes were set equal to 0.01,a

mwhereas the amplitude of the noise resulting from these
initial conditions was no more than D0.001 for m¹ 16.

The two-dimensional models sought to determine the
equilibrium structure of a disk that is being heated by infal-
ling gas and self-contraction and cooled by radiative losses
to interstellar space. The resulting midplane temperature
proÐles are depicted in The temperature plateausFigure 1.
in the inner disk around 1750 K and 1450 K are the result of
thermal bu†ering caused by the loss of opacity due to water
vapor and iron grains, respectively. A variety of astronomi-
cal, cosmochemical, and theoretical evidence supports the
general trend exhibited by However,Figure 1 (Boss 1998a).
because of the slow convergence toward an equilibrium
solution in the outer disk, the temperature at 10 AU is(T10)not well determined and is roughly K onT10\ 100 ^ 50
the basis of the two-dimensional models. Accordingly, T10has been treated as a free parameter, in order to investigate
the behavior of disks with varied thermal proÐles. As shown
in has been varied in the range 50È500 K, withFigure 1, T10the higher values being intended primarily to demonstrate
stability of the outer disk at sufficiently high temperatures.
The initial temperature is 50 K in the infalling envelope for
all the models.

Because the mass of the disk (0.13 is not negligibleM
_

)
compared to that of the central protostar (1 for allM

_models), the initial angular velocity had to be adjusted in
order to start with the disks in approximate centrifugal
balance. This was done by beginning with the disk having
the angular velocity appropriate for Keplerian rotation
around a protostar with a mass of 1.13 In addition,M

_
.

and inside the disk initially. This initial equi-v
r
\ 0 vh\ 0

librium was then tested by evolving the disk in two dimen-
sions for many rotation periods, to ensure that the disk was
indeed stable in the radial direction, and the initial angular
velocity proÐle was then varied until a satisfactory result
was obtained. The vertical equilibrium of the outer disk was
less well preserved, however, but because of the decision to
treat a free parameter, such behavior was to beT10expected : e.g., the lower values of lead to noticeableT10vertical contraction of the outer disk.

Varying has the e†ect of varying the minimum valueT10of the Q stability parameter in each disk. ForToomre (1964)
an axisymmetric, thin, collisionless disk, Toomre (1964)
showed that a nonaxisymmetric perturbation will be
unstable if Q\ 1. For a disk in Keplerian rotation, Q is
deÐned as

Q\ 0.936c
s
)

nGp
,

TABLE 2

INITIAL CONDITIONS AND RESULTS FOR VARIED m PERTURBATION MODELS

T10 Number t
fModel c (K) Protostar Perturbation Result of GGPPs (yr)

o . . . . . . . 1.0 150. No wobble m\ 2 Marginal . . . 656.
a . . . . . . . . 1.0 150. No wobble m\ 1 Unstable 1 650.
aw . . . . . . 1.0 150. Wobble m\ 1 Unstable 2 754.
ah . . . . . . 1.0 150. Wobble m\ 16 Stable 0 544.
az . . . . . . 1.0 150. Wobble Axisymmetric Stable 0 311.
aa . . . . . . 1.0 150. Wobble m\ 1, 2, 3, 4 Unstable 2 675.
z . . . . . . . . 1.4 75. No wobble m\ 2 Unstable 2 702.
b . . . . . . . 1.4 75. No wobble m\ 1 Unstable 1 596.
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Q stability parameter as a function of radius forFIG. 2.ÈToomre (1964)
initial models with (a) c\ 1 400, 300, 200, 150, 100, 50 K) and(T10\ 500,
with (b) c\ 7/5 75, and 50 K). Horizontal dotted line is the(T10\ 100,
nominal threshold for instability (Q\ 1).

where is the sound speed, ) is the angular velocity, and Gc
sis the gravitational constant. For locally adiabatic varia-

tions in the disk temperature, the sound speed is deÐned as

c
s
\
Acp

o
B1@2

.

depicts the radial dependence of Q for the three-Figure 2
dimensional models with varied and varied cÈT10evidently the disks become more prone to instability in their
cool outer regions.

lists the initial conditions for the three-Table 1
dimensional models that were given initial m\ 2 density
perturbations. Variations in both c and were exploredT10systematically, in order to determine the critical values of Q
for instability. The minimum initial value of Q\Qminoccurs at 10 AU in each model. lists the initialTable 2
conditions for three-dimensional models with variations in
the form of the initial density perturbation and in the
wobble of the central protostar. In addition to these models,
several models in which the numerical resolution was(NÕ)varied in order to learn the e†ect on disk stability will be
discussed.

4. RESULTS

4.1. ClassiÐcation of Outcomes
Tables and list not only the initial conditions but also1 2

the basic outcome of each three-dimensional model at the
Ðnal time The outcomes are classiÐed as one of three(t

f
).

possibilities : stable, marginal, or unstable. Disks that were
evolved far enough in time to form GGPPs are also classi-
Ðed by the number of distinct GGPPs evident at the Ðnal
time.

The classiÐcation of outcomes is based upon the dis-
cussion of stability for nondissipative systems by

when perturbed, stable systemsChandrasekhar (1961) :
undergo undamped oscillations with a characteristic fre-
quency, while unstable systems experience exponential
growth (with time) of the perturbation. Marginal systems
are then those that fall between these two well-deÐned out-
comes. It is of course much easier to demonstrate instability
than stabilityÈan apparently stable disk may become
unstable at very large times. Practically speaking then, we
can classify the disks only on the basis of their behavior
during a Ðxed period of time, taken here to be about 13
rotation periods at 10 AU, or about 360 yr.

4.2. Varied Outer Disk Temperatures
Models p, o, and n resulted in three di†erent behaviors.

These three models constitute a sequence with Ðxed c\ 1
and varied 150, and 100 K, respectively.T10 \ 300,

shows the time evolution of the m\ 2 mode forFigure 3
model p, with which is classiÐed as a stableQmin\ 1.6,
model. The degree of nonaxisymmetry clearly undergoes
oscillatory behavior in the outer disk, with a period on the
order of 60 yr near 10 AU, about twice the orbital period at
10 AU, yr (at 1 AU, yr). The period ofP10 \ 28.5 P1\ 0.95
the oscillation increases with increasing orbital radius. The
lower amplitude structure in the inner disk has a sawtooth
appearance and disappears as the size of the time step is
decreased and hence appears to be largely numerical noise.
The very innermost disk is artiÐcially forced to remain
axisymmetric in order to avoid the very small time step that
would be needed to prevent the growth of similar numerical
noise inside a few AU. Considering that the calculation
extends to D13 rotation periods at 10 AU and to D400
rotation periods at 1 AU, the degree of numerical stability
evident in is remarkable.Figure 3
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FIG. 3.ÈTime evolution of the amplitude of the m\ 2 density mode as
a function of disk radius in the stable disk model p Disk(Qmin \ 1.6).
radius increases to left (spanning 1È10 AU) and time increases to right
(0È363 yr). Starting from an initial amplitude of 0.01, the maximum ampli-
tude rises to only 0.067 after many rotation periods, in an oscillatory
manner, indicating the nonaxisymmetric stability of the disk. The sawtooth
amplitude in the inner half of the disk at later times is numerical noise.

shows the time evolution of the m\ 2 mode forFigure 4
model o, with which is classiÐed as a marginalQmin\ 1.1,
model. The m\ 2 amplitude oscillates at Ðrst but then
undergoes a period of exponential growth. Apparently mar-
ginally unstable disks will eventually fragment into GGPPs,
though on longer timescales than unstable disks. By 656 yr,
the maximum amplitude of the m\ 2 model in model o had
grown to 0.75, and the disk was well on its way to forming
two GGPPs around 8 AU.

Finally, shows the time evolution of the m\ 2Figure 5
mode for model n, with which is classiÐed as anQmin\ 0.94,
unstable model. The degree of nonaxisymmetry grows expo-
nentially with time in the outer disk saturating at a(Fig. 6),
level greater than 1. Even though GGPP formation has
occurred in the outer disk, the inner disk remains very
nearly axisymmetric.

This sequence of three models clearly shows the increas-
ing tendency toward self-gravitational instability of the disk
as its outer temperature is lowered from 300 K to 100 K
(Fig. 1).

The stable disk models r and q (with c\ 1 and T10 \ 400
and 500 K, respectively) were evolved over only a short
period of time because of the absence of any signiÐcant
growth during the Ðrst outer disk rotation period
(maximum m\ 2 amplitudes of 0.015 and 0.013,

FIG. 4.ÈTime evolution of the amplitude of the m\ 2 density mode as
a function of disk radius in the marginal disk model o as in(Qmin \ 1.1),

The amplitude is initially oscillatory but then begins to growFig. 3.
rapidly. Some numerical noise is evident around 3 AU.

FIG. 5.ÈTime evolution of the amplitude of the m\ 2 density mode as
a function of disk radius in the unstable disk model n as in(Qmin \ 0.94),

The amplitude rises steadily around 8 AU and then saturates at aFig. 3.
level greater than 1, signifying the formation of two GGPPs in the disk.
The inner disk remains very nearly axisymmetric throughout, with negligi-
ble numerical noise.

respectively). As could be expected, model m (with T10\ 50
K) was the most unstable of all and produced 4 GGPPs
(two each at orbital radii of 7.5 and 9.5 AU) within 300 yr,
when the m\ 2 amplitude saturated at These foura2B 2.
later merged into two, while a third GGPP formed around
5 AU because of the growth of the m\ 1 mode.

4.3. An Unstable Disk
Because the evolution of the gravitational instability is

similar for all the unstable disks studied here, we present in
some detail the results for a representative model.

The midplane evolution of model n is displayed in Figure
Starting from a nearly axisymmetric state7. (a2\ 0.01,

the m\ 2 mode begins to grow around aa
B2B 0.001),

radius of 8 AU. Because of di†erential rotation, this non-

FIG. 6.ÈTime evolution of the amplitude of the m\ 2 density mode at
a Ðxed radius of 8.13 AU for model n. Prior to reaching saturation, the
amplitude grows roughly exponentially with time.



a b

c d

e f

FIG. 7.ÈTime evolution of the midplane density in model n : (a) 0.0 yr, (b) 169 yr, (c) 255 yr, (d) 344 yr, (e) 379 yr, and ( f ) 407 yr. The diamond denotes the
solar-mass protostar at the center of the 20 AU diameter disk. Each contour represents a factor of 2 change in density, with the maximum density, ranging
from 2 ] 10~9 g cm~3 in (a) to 1] 10~8 g cm~3 in ( f ), generally increasing toward the center. The initially nearly axisymmetric, counterclockwise-rotating
disk develops trailing spiral arms that continue to grow in amplitude in the outer disk and form two GGPPs, seen at 11 oÏclock and 5 oÏclock in ( f ).
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axisymmetry is sheared into two trailing spiral arms, which
continue to grow in amplitude while remaining conÐned to
the outer disk. By 255 yr, the spiral arms have grown strong
enough that their gravitational torques are removing
orbital angular momentum from inside a radius of 8 AU
and depositing it outside 8 AU at a rate of D1040 g cm2
s~2, a rate high enough to transport all the diskÏs angular
momentum g cm2 s~1) in D105 yr. As the(J

d
\ 3.0 ] 1052

spiral arms increase in amplitude, their peak gravitational
torques continue to grow, lowering the timescale for
angular momentum transport to D104 yr by 344 yr. The
spiral arms are quite distinct by this time, with the phase of
the maximum density of the two-armed spiral being well
ordered (Fig. 8).

As the spiral arms continue to grow in amplitude, their
maximum density regions become increasingly prominent
and well deÐned. At this point, the banana-shaped clumps
may be properly called GGPPs. For model n, at a time of
344 yr the two clumps each have masses of about 2(Fig. 7d),

where all the gas surrounding each density maximumMJup,and with a density of at least is included in the total.0.1omaxHowever, thereafter one GGPP begins to grow faster than
the other. By 351 yr, one GGPP contains 4 whileMJup,other still has only 2 of gas and dust. By 379 yr, theMJupsmaller mass GGPP has begun to lose mass, falling to 1

while the more massive GGPP attains 6 by 407MJup, MJupyr. By then the mass ratio is greater than 10 :1. One measure
of this di†erential growth is evident in the m\ 1Figure 9 :
mode begins to grow rapidly after the GGPPs become well
deÐned, allowing one GGPP to grow at the expense of the
other. Even though the disk was seeded with an m\ 2 per-
turbation, the Ðnal outcome may well be the formation of a
single GGPP moving on an initially circular orbit in the
outer disk.

FIG. 8.ÈPhase (in degrees) of the m\ 2 mode of the density in the disk
midplane at 344 yr for model n. While the mode is completely disordered
in the inner disk, a clear two-armed spiral pattern in evident in the outer
disk, centered about 8.5 AU.

FIG. 9.ÈTime evolution of the amplitude of the m\ 1 density mode as
a function of disk radius in the unstable disk model n as in(Qmin \ 0.94),

The m\ 1 amplitude rises rapidly after D300 yr, when two GGPPsFig. 3.
begin to form, leading to preferential growth of one GGPP.

The gravitational torques of the GGPPs begin to open a
gap in their vicinity, as is evident in model nÏs surface
density proÐle The initially power-law p proÐle(Fig. 10).
has developed a peak at the radius of the GGPPs sur-
rounded by troughs and berms. Because of the inviscid
nature of the calculations, there is no physical disk viscosity
to resist the formation of gaps (cf. & PapaloizouLin 1986 ;

& Hourigan evidently, whatever numericalWard 1989) ;
viscosity is present is unable to counteract the growing
gravitational torques.

The extent of the gravitational interactions of the GGPPs
with the disk is consistent with the predictions of spiral
density wave theory (see, e.g., & TremaineBinney 1987).
For an m-armed spiral pattern rotating with angular veloc-

FIG. 10.ÈLog of the surface density (p, in g cm~2) as a function of
radius for model n at 379 yr. Solid line is minimum surface density needed
to have the Toomre Q\ 1. The GGPPs orbit around 8.5 AU, at the local
peak in p. The inner Lindblad resonance at 4.9 AU marks the inner bound-
ary of the region disturbed by the GGPPs.
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ity the frequency of intersections per epicycle of a Ñuid)
b
,

element in the disk is

l\ m()[ )
b
)

^i
.

The Lindblad resonances occur when l\ 1, yielding

i \ ^m()[ )
b
) .

For a Keplerian disk, the epicyclic frequency i \ ^), the
disk angular velocity, so

)\ m
m^ 1

)
b

.

Density waves can propagate between the outer and inner
Lindblad resonances. For a two-armed spiral (m\ 2), the
outer and inner Lindblad resonance (OLR and ILR,
respectively) fall at

)\ 23)b
and 2)

b
.

For model n at 379 yr, rad s~1, yielding an OLR)
b
\ 10~8

beyond 10 AU, outside the computational volume, and an
ILR at 4.9 AU. As shown in the ILR marks theFigure 10,
approximate inner boundary of the portion of the disk
where the gravitational torques of the GGPPs have dis-
turbed the initial p proÐle. shows that the phaseFigure 11
of the m\ 2 mode, which demonstrates nearly uniform
rotation at the location of the GGPPs around 8.5 AU,
traces a two-armed spiral pattern inward to the ILR, where
the phase becomes disordered.

4.4. Varied L ocal T hermodynamics
As shown by the disk instability canBoss (1997b),

proceed for c\ 7/5 as well as for c\ 1, the two extremes for
adiabatic or isothermal behavior, respectively. While it

FIG. 11.ÈPhase (in degrees) of the m\ 2 mode of the density in the
disk midplane at 406 yr for model n. The mode rotates nearly uniformly in
the vicinity of the GGPPs at 8.5 AU and maintains a spiral pattern inward
to the ILR at 4.9 AU, inside of which the pattern becomes disordered.

would be interesting to explore the e†ects of disk heating
and cooling processes during the instability, the fact that the
instability proceeds regardless of c implies that the insta-
bility is a robust one, provided that is low enough.Qmindepicts the growth of the m\ 2 mode in modelFigure 12
z, with c\ 7/5 and a value close to that of theQmin\ 0.96,
c\ 1 model n The evolution of this unstable(Qmin\ 0.94).
disk model is very similar to that of model n except(Fig. 5),
for taking a somewhat longer time to develop to the same
maximum amplitude (about 430 yr for model z, compared
to 361 yr for model n). The maximum temperatures inside
the GGPPs exceed 300 K by 702 yr, well above the initial
outer disk temperature of 75 K. Evidently adiabatic heating
during the instability does not prevent GGPP formation.
By 702 yr, the masses of the GGPPs have risen to D8 MJupapiece, and the average temperature inside the GGPPs is
250 K.

shows the stability results as a function ofFigure 13 Qminand c for initial m\ 2 density perturbations. While the
models only coarsely sample this parameter space, there is
no evidence that critical values of depend on c, i.e., itQminappears that is sufficient for an unstable disk, inde-Qmin\ 1
pendent of c. Similarly, it appears that the critical value of

for marginal stability, may also be approx-Qmin Qmin\ 1.5,
imately independent of c. Because several marginal disks
were evolved far enough in time for GGPP formation to
occur (models o and c), it thus appears that a sufficient
condition for GGPP formation is The criticalQmin\ 1.5.
value of for disk instability is formally identical toQmin\ 1
that advanced by for a stellar disk, thoughToomre (1964)
ToomreÏs analysis involved axisymmetric disturbances
rather than m\ 2 nonaxisymmetric perturbations, as
would be appropriate for very tightly wound spiral density
waves.

4.5. Varied Density Perturbations and Protostellar Wobbles
The previous models were all started with a(Table 1)

dominant m\ 2 density perturbation of amplitude a2\
0.01, initially in phase throughout the disk, which predis-
poses unstable disks to forming pairs of GGPPs. Protopla-
netary disks need not be similarly seeded, so it is important
to learn what happens when disks are given di†erent initial
density perturbations.

FIG. 12.ÈTime evolution of the amplitude of the m\ 2 density mode
as a function of disk radius in the c\ 7/5 disk model z as in(Qmin \ 0.96),

Unstable disks occur even for adiabatic local thermodynamics,Fig. 3.
provided that Qmin \ 1.
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FIG. 13.ÈDisk stability to m\ 2 density perturbations as a function of
the assumed thermodynamics (c) and the minimum value of the diskÏs
Toomre Q parameter. Unstable disk models all have Q\ 1 (dashed line),
consistent with However, marginally unstable disks seemToomre (1964).
to be able to form GGPPs for 1 \ Q\ 1.5.

Several variations of model o were calculated in order to
learn the behavior of low-order modes in a margin-mD 2
ally stable disk. Model a was identical to model o except for
having an initial m\ 1 perturbation instead of m\ 2. The
m\ 1 mode began to grow immediately, indicating insta-
bility, because the m\ 1 mode has a longer wavelength in
the azimuthal direction than the m\ 2 mode and so e†ec-
tively can involve more self-gravitating gas than the mar-
ginally stable m\ 2 mode The m\ 1 mode(Boss 1982).
continued to grow strongly and by 650 yr had formed a
single GGPP moving in a circular orbit at 9 AU with a
mass of D10 MJup.Wobbling protostars preferentially excite the m\ 1
mode et al. Model aw was identical to model(Adams 1989).
a, except that the protostar was allowed to wobble back and
forth in order to preserve the location of the systemÏs center
of mass precisely at the coordinate origin. While the outer
disk evolved in much the same manner as in model a,
forming one GGPP at 9 AU, the inner disk behaved con-
siderably di†erently. The wobbling protostar served as a
feedback mechanism for the growth of m\ 1 non-
axisymmetry in the inner disk : the greater the wobble of the
protostar, the greater the di†erential gravitational force on
the disk, leading to larger disk asymmetry and hence a
larger protostellar wobble. The protostellar wobble in
model a led to the formation of a second GGPP at an
orbital radius of D5 AU, a suggestive location considering
the orbital radius of Jupiter.

Model ah began with an initial m\ 16 density pertur-
bation and behaved very similarly to model az, which had
no density perturbation at all. Both models ah and az
appeared to be stable, with the amplitudes of the low-m
modes (m\ 1, 2, 3) remaining quite small (\0.005). The
short wavelength of the initial m\ 16 perturbation in

model ah accounts for its stability, consistent with the mar-
ginal stability of the m\ 2 mode compared to the m\ 1
mode. It is noteworthy that the low-level modes m\ 1, 2,
3, . . . initially present as noise in model ah did not grow
either, even in the presence of the wobbling protostar. Evi-
dently instability in these models requires a density pertur-
bation with a Ðnite amplitude (D0.01) that is initially in
phase throughout the disk. Including a wobbling protostar
was insufficient to lead to growth of nonaxisymmetry. The
stability of models ah and az (calculated to 544 yr and 311
yr, respectively) is also strong evidence of the stability of
these disk models to numerical noise, and hence of the
absence of artiÐcial fragmentation caused by the growth of
unphysical e†ects et al.(Truelove 1997).

Finally, model aa was started with perhaps the most rea-
listic initial conditionsÈall four low-order modes (m\ 1, 2,
3, 4) were given an initial amplitude of 0.01, and the protos-
tellar wobble was included. Model aa was unstable to the
growth of the m\ 1 mode, in both the middle and outer
disk the growth of the m\ 1 mode in the outer(Fig. 14) ;
disk was very similar to that of model a, implying indepen-
dent growth of the modes in the middle and outer disk. The
disk eventually formed two GGPPs, one around 6 AU and
one at 10 AU with masses of D18 and D10(Fig. 15), MJuprespectively. Considering that D130 of disk gasMJup, MJupis available for GGPP formation in these models, the rather
large masses of the GGPPs in model aa are perhaps not too
surprising.

4.6. Varied Azimuthal Resolution
In order to study the dependence of the growth of noise

on the spatial resolution of the models, several models were
calculated with variations in the number of azimuthal grid
points, Three models were calculated, each of whichNÕ.was identical to the initially axisymmetric model az (with

except for having 16, and 32, respectively.NÕ\ 64), NÕ\ 8,
After about 300 yr, the amplitude of the m\ 2 mode in the
usually noisy inner disk had grown to the range 0.1È1 in
each of the lower resolution models, whereas in model az it
had grown to only 0.01 and then decreased again. Evi-
dently, poor spatial resolution can exacerbate the growth of

FIG. 14.ÈTime evolution of the amplitude of the m\ 1 density mode
as a function of disk radius in model aa as in The(Qmin \ 1.1), Fig. 3.
inclusion of protostellar wobble excites the growth of the m\ 1 density
mode and leads to the formation of a GGPP in the middle of the disk at
D6 AU. An additional GGPP forms near the edge of the disk. Numerical
noise is evident just outside the boundary of the artiÐcially axisymmetric
innermost disk, located at about 2.7 AU in this model.
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FIG. 15.ÈMidplane density of model aa at 619 yr, as in Fig. 7.
Maximum density is 5 ] 10~8 g cm~3. GGPPs are evident at 2 oÏclock at
6 AU radius and near 6 oÏclock at 9.5 AU radius. Each GGPP has accreted
most of the gas initially within its annular ring.

numerical noise in these disks, but with the standard
resolution, the level of noise is not worrisome.NÕ\ 64,

A model was also computed with double the standard
azimuthal resolution. Model n2 had e†ectively NÕ\ 128
(achieved by employing symmetry through the rotation
axis, restricting the model to even m modes) but was other-
wise identical to model n, with and no symmetryNÕ\ 64
assumptions. Model n2 was intended to address the issue of
artiÐcial fragmentation raised by et al. inTruelove (1997)
the context of isothermal cloud collapse. et al.Truelove

suggested that artiÐcial fragmentation could occur(1997)
whenever the cell size *x exceeds of the local Jeans length14wherejJ,

jJ \
Anc

s
2

Go
B1@2

.

For a spherical coordinate grid, there are three di†erent
grid spacings, depending on the coordinate direction :

*x
r
\ *r , *xh \ r*h ,

and

*xÕ\ r sin h */ .

For a spherical coordinate grid, a single grid spacing
(comparable to that employed by et al. canTruelove 1997)
be deÐned as

*x \ (*x
r
*xh *xÕ)1@3 ,

where *x is the width of a cubical cell with approximately
the same volume as the spherical coordinate cell. If the
Jeans mass is the physically relevant quantity rather than
the Jeans length, then *x should be the applicable cell size
for the present models. In the adaptive mesh reÐnement
models of et al. their Cartesian grid isTruelove (1997),

locally uniform, so the Jeans mass criterion is identical to
the Jeans length criterion. While it could be argued that the
Jeans mass is the more appropriate criterion for any non-
uniform grid, a more conservative approach is to try to
satisfy both criteria.

The initial values of these various lengths are listed in
for both models n and n2, at the GGPP-formingTable 3

radius of 8 AU in the midplane. shows that forTable 3
model n, and *x are each considerably less than*x

r
, *xh,but If *x is the proper length, then model njJ/4, *xÕB jJ/4.

satisÐes the et al. criterion, but if is theTruelove (1997) *xÕproper length, then the criterion is only marginally satisÐed.
However, for model 2n, all four grid spacings are comfort-
ably less than jJ/4.

If artiÐcial fragmentation is responsible for GGPP for-
mation in model n, then model n2 should not undergo
GGPP formation. Instead, model n2 behaves very similarly
to model n, as shown in The amplitude of theFigure 16.
m\ 2 mode in model n2 grows very nearly identically to
the m\ 2 mode in model n Figures and strong-(Fig. 6). 6 16
ly imply that the hydrodynamic solutions for the m\ 2
mode have converged, and that the spatial resolution is
quite adequate for these exploratory models of the initial

TABLE 3

INITIAL JEANS LENGTH AND GRID SPACINGS FOR

TWO MODELS IN THE DISK MIDPLANE AT

AN ORBITAL RADIUS OF 8 AU

Parameter Model n (cm) Model n2 (cm)

jJ . . . . . . . . . 4.9 ] 1013 4.9] 1013
jJ/4 . . . . . . . 1.2] 1013 1.2] 1013
*x

r
. . . . . . . . 2.8 ] 1012 2.8] 1012

*xh . . . . . . . 7.1] 1011 7.1] 1011
*xÕ . . . . . . . 1.2 ] 1013 6.0] 1012
*x . . . . . . . . 2.9 ] 1012 2.3] 1012

FIG. 16.ÈTime evolution of the amplitude of the m\ 2 density mode
at a Ðxed radius of 8.13 AU for model n2, with twice the azimuthal
resolution of model n (cf. Fig. 6).
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phases of GGPP instability. Following the subsequent evo-
lution of the GGPPs, however, will require considerably
greater spatial resolution of the GGPPs.

5. DISCUSSION

5.1. Comparison with Previous Work
Previous numerical studies of circumstellar disks have

shown that marginally unstable disks can evolve through
the growth of trailing spiral arms and the subsequent trans-
port of mass and angular momentum caused by the gravita-
tional torques associated with the spiral arms et al.(Cassen

et al. & Benz1981 ; Boss 1984 ; Tomley 1991 ; Adams 1992 ;
& Bodenheimer Steiman-Laughlin 1994 ; Tomley,

Cameron, & Cassen Durisen, & Davis1994 ; Pickett, 1996 ;
& Ro� z5 yczkaLaughlin 1996 ; Drimmel 1996 ; Pickett,

Durisen, & Link Korchagin, & Adams1997 ; Laughlin,
et al. Here we compare the present1997 ; Nelson 1998).

results to these previous studies.
et al. used an N-body code to model two-Cassen (1981)

dimensional, inÐnitely thin, isothermal disks with p
i
P r~1.

They found that disk stability depended strongly on the
ratio of the disk mass to the central star mass. For a 50 AU
radius, disk orbiting a solar-mass star, a situ-M

d
\ 0.1 M

_ation somewhat comparable to that of the present models, a
model with a disk temperature of 100 K and wasQmin\ 3.7
stable, consistent with the present results. Tomley et al.

continued these N-body calculations but con-(1991, 1994)
sidered only disks with small radii (R\ 1.8 AU) that cannot
be compared to the present models, in which the innermost
disk remained axisymmetric because of the high inner disk
temperatures (Fig. 1).

& Bodenheimer studied the three-Laughlin (1994)
dimensional evolution of a disk with a mass (B0.5 M

_
)

comparable to that of its central protostar, using a
smoothed particle hydrodynamics (SPH) code and
assuming locally isothermal thermodynamics, as in the
present c\ 1 models. They found that nonaxisymmetry
grew in a model with forming trailing spiralQmin\ 1.3,
arms throughout the evolution, which lasted for over 1
rotation period at the initial edge of the disk (230 AU).
Another model with however, fragmented intoQminB 1,
two blobs in 0.1 the elapsed time of the model.Qmin\ 1.3
While these results apply to much larger radii disks than the
present models, they are fairly consistent in terms of their

dependence.Qmin & Ro� z5 yczka used a two-dimensionalLaughlin (1996)
code to systematically study massive, thin disks with c\ 2
and 5/3 thermodynamics, Ðnding that separat-QminB 1.15
ed disks that fragment from those that evolve through spiral
arms. The main di†erence with the present models appears
to be the eventual fragmentation of at least two of the mar-
ginally unstable disks (models o and c) in the present study,
compared to the persistent spiral structure in &Laughlin
Ro� z5 yczkaÏs models. The exact reason for(1996) Qmin[ 1.15
this discrepancy is unclear, but is presumably related to the
di†erences in the calculations. For example, models o and c
were evolved to a time greater than whereas20P10,

& Ro� z5 yczkaÏs models generally wereLaughlin (1996)
evolved for about 10 outer disk rotation periods. Other
possibly important di†erences include the values of c
employed, the dimensionality of the calculations, the initial
disk p proÐles (Gaussian in the case of Laughlin &
Ro� z5 yczka), and hence the initial thermal proÐles.

performed two-dimensional SPH studiesDrimmel (1996)
of massive, thin disks with c\ 2 and 5/3 and Qmin\ 1.15,
Ðnding that when the disk mass equalled the central mass,
growth of the m\ 1 mode could produce self-gravitating
clumps. Clump formation was inhibited, however, when the
disk mass was only one-third that of the central object. The
initial surface density was and the calculationsp P e~r@rs,
explicitly included the e†ects of viscosity, so once again the
models are not directly comparable to the present work.

Pickett et al. computed three-dimensional(1996, 1997)
models of polytropic (c\ 5/3) disks with varied angular
momentum distributions. These disks included central con-
centrations similar to central protostars, and when scaled to
a total mass of D1 the disks had radii of up to a fewM

_
,

AU. Models with were unstable to the formationQminD 1
of nonaxisymmetric structure, though it was unclear if the
system would breakup into several objects.

Continuing the e†ort initiated by & BenzAdams (1992),
et al. presented two-dimensional models ofNelson (1998)

thin, locally isothermal disks with radii of 50 AU. As in the
present study, et al. found that disks withNelson (1998)

broke up into clumps. However, some of theQmin\ 1.5
SPH disk models broke up into as many as 33 clumps,
considerably larger than the number of GGPPs found in
the present unstable models. Because of the di†erences in
the initial disk models, a more precise comparison is not
possible, but the results of et al. regardingNelson (1998)
clump formation for and relative stability ofQmin\ 1.5
disks for are qualitatively consistent with theQmin[ 2
present models.

5.2. Triggering the GGPP Instability
In general, the previous numerical studies did not

encounter clump formation unless the disk was fairly
unstable, a situation that is arguably unobtainable, because
marginally unstable disks are believed to evolve toward a
more stable conÐguration (e.g., by transporting disk mass
inward onto the stabilizing protostar). As a circumstellar
disk builds up by the infall of molecular cloud gas and dust,
then, the disk is expected to transport mass inward and
remain marginally unstable. However, the present Ðnding
that the marginally unstable disk models o and c eventually
began to break up into GGPPs casts some doubt on
whether or not all marginally unstable disks behave in the
same manner. If marginally unstable disks can evolve in
such a way as to form GGPPs rather than only transport
mass inward, then GGPP formation may be a natural
outcome of the evolution of protostellar and protoplane-
tary disks.

On the other hand, if has to be considerablyQmindecreased in order to transform a spiral-armÈevolving disk
into a GGPP-forming disk, it could then be argued that the
GGPP instability is unlikely to ever occur, at least in the
absence of some mechanism that could suddenly (faster
than the disk can evolve by spiral density waves) push the
disk over into the GGPP formation regime. One such
mechanism could be episodic accretion of mass by a mar-
ginally unstable disk from the infalling remnant of the
parent molecular cloud core.

suggested that clumpy accretion of infallingBoss (1997b)
envelope gas could drive below 1. Direct observationsQminof infalling clumps in the B335 molecular cloud by

et al. imply that several of gas couldVelusamy (1995) MJupbe added to the disk in a single clump over a time period of
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less than 103 yr. Spiral density waves presumably would be
trying to transport away this excess mass at the same time
that the GGPPs are trying to form, and the outcome of this
competition remains uncertain in the absence of a detailed
calculation. If enough mass is dumped more or less instan-
taneously onto a marginally unstable disk, however, the
GGPP instability should be triggered.

On the basis of the evidence for short-lived radioactivities
in primitive meteorites, it has been suggested that the col-
lapse of the presolar cloud was triggered by the arrival of a
supernova shock wave carrying freshly synthesized radioac-
tive nuclei & Truran Numerical models(Cameron 1977).
have shown that shock-wave triggering accelerates the col-
lapse of the cloud envelope onto the protostar and its disk

The implications of shock-wave triggering for(Boss 1995).
GGPP formation remain to be explored, however.

5.3. Stability of GGPPs
The present models are necessarily limited to the earliest

phase of GGPP formation in unstable disks. The sub-
sequent contraction and evolution of the GGPPs is there-
fore uncertain, and in particular whether or not giant
planets can be formed from the GGPPs is unproven. At a
minimum, though, the GGPPs must be self-gravitating and
tidally stable with respect to the protostarÏs gravitational
forces if giant planets are to result.

Whether or not the GGPPs are gravitationally bound
can be determined by comparing their masses with the rele-
vant Jeans mass for their densities and temperatures. If the
Jeans mass is deÐned as the mass of a uniform densityMJsphere with a diameter equal to the Jeans length, then in cgs
units,

MJ \ 1.3] 1023
AT

k
B3@2

o~1@2 ,

where k B 2.3 is the mean molecular weight. For a typical
GGPP with a temperature of D100 K and a density of
D10~8 g cm~3, Considering that theMJ B 0.2 MJup.GGPPs in the present models typically have masses of
several or more, it is clear that these clumps are gravi-MJuptationally bound, even when their internal temperatures are
D300 K.

The free-fall time for a uniform density sphere istffdeÐned as

tff\
A 3n
32Go

B1@2
.

For a GGPP with a density of 10~8 g cm~3, yr,tff D 0.7
considerably shorter than the orbital period. Hence the
GGPPs can be expected to begin to contract to higher
densities on a short timescale.

Besides internal gas pressure and centrifugal e†ects,
GGPP contraction will be resisted by the tidal forces
exerted by the protostar and the disk. A tidal stability cri-
terion was derived by & Cameron for aDeCampli (1979)
protoplanet of mass orbiting a protostar of massM

p
M

s
,

inside a disk with a surface density distribution that results
in constant orbital velocity, rather than the vÕP r~1@2
dependence that characterizes a Keplerian disk. Because the
disk mass is much smaller than the protostar mass in the
present models, the disk mass can be neglected in the

& Cameron derivation. This approx-DeCampli (1979)
imation yields a critical tidal radius (the inner Lagranger

t

point) that must exceed the planetary radius in order forR
pthe planet to be stable with respect to the tidal force of the

protostar :

R
p
\ r

t
\ r

p

AM
p

3M
s

B1@3
,

where is the orbital radius of the planet. For a solar-massr
pprotostar, tidal stability then requires

R
p
\ 0.069r

p

A M
p

MJup

B1@3
.

For the D6 GGPP located at D8.5 AU inMJup Figure 7f
(model n) to be tidally stable, its radius must be less than
D1.1 AU. While the extent of the GGPP in isFigure 7f
perhaps 1 or 2 AU in the azimuthal direction, in the tidally
critical radial direction its radius is just less than 1 AU.
Hence the bulk of the gas is indeed gravitationally bound to
the GGPP. Similarly, for the D18 GGPP located atMJup
D6 AU in (model aa) to be tidally stable, itsFigure 15
radius must not exceed D1.1 AU, which is also the case.

To the extent that a portion of a GGPP does extend
beyond the tidal radius, this outlying material would not
participate in the contraction toward giant planet densities,
reducing the maximum mass of the giant planet. Consider-
ing the rather large masses obtained in the present models
(D10 this does not appear to be a major concern, andMJup),in fact could be viewed positively, as a means of reducing
somewhat the estimated masses of the Ðnal planets to a
range perhaps closer to that of the observed solar system
and extrasolar giant planets.

5.4. Core Formation in a GGPP
DeCampli, & Cameron showed thatSlattery, (1980)

liquid drops of iron or rock would sink to form a core in a
GGPP. agreed that the metals initiallyStevenson (1982)
present would rain out to form a core but noted that the
resulting core mass would be considerably smaller than the
estimates for core masses prevalent at the time. Stevenson

pointed out that if one tried to boost the core mass(1982)
through impacts of small bodies after the planet had already
formed, the late-added iron and silicate would be soluble in
the planetÏs adiabatic envelope and would not rain out to
the core. Coupled with the failure of the GGPP model to
explain the similarity in masses of the cores of the giant and
outer planets, justiÐably concluded thatStevenson (1982)
the evidence favored the core accretion mechanism.

A 1 GGPP of solar composition (Z\ 0.02) containsMJup
D6 of metals, while a Saturn-mass GGPP wouldM

^contain D2 of metals. If the dust grains and theM
^gaseous metal component manage to Ðnd their way to the

center of the GGPPs, then ice/rock cores of sufficient mass
to match the latest interior models (implying a 0È12 M

^core for Jupiter and a 1È13 core for Saturn) could form.M
^Sedimentation of the dust in a solar-composition GGPP

might then be sufficient to explain the core masses of Jupiter
and Saturn, removing one of the primary objections to the
GGPP mechanism Considering the present(Boss 1997b).
uncertainties in giant planet core masses, it is unclear if the
core masses of the giant planets truly are similar to each
other or to those of the outer planets, possibly removing the
second of the objections of Stevenson (1982).

Following the formation phase depicted in the present
calculations, the GGPPs will slowly contract toward plan-
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etary densities. et al. calculated theBodenheimer (1980)
evolution of isolated GGPPs in spherical symmetry (one-
dimensional) and found that starting from a central tem-
perature of K and a central density of 10~9 gT

c
\ 100

cm~3 (similar to the present models), a 1 GGPPMJupwould contract for D105 yr before reaching K.T
c
\ 1000

During this period, conditions should be hospitable for the
survival of iron and silicate dust grains and for the contin-
ued insolubility of water in molecular hydrogen (Stevenson
& Fishbein the dominant gas in a GGPP.1981),

While the gaseous component of the GGPP is contract-
ing on a timescale of 105 yr, dust grains can grow by col-
lisional coagulation and settle to the center of a
nonturbulent GGPP in much the same way that dust grains
are envisioned to settle toward the midplane of the solar
nebula (see, e.g., Small dust grainsWeidenschilling 1988).
(with radius a \ 1 m) moving through a gas of density o
obey the Epstein drag law, yielding a response time to gast

edrag

t
e
\ ao

a
oc

s
,

where is the density of the dust grain itself. The terminalo
asettling velocity V of a dust grain subject to a gravitational

acceleration is For a uniform density, sphericala
g

V \ a
g
t
e
.

GGPP of density the gravitational acceleration at ao
p
,

radius R inside the GGPP is

a
g
\ [43nGo

p
R .

The terminal velocity is then

V \ a
g
t
e
\ [4naGo

a
R

3c
s

,

leading to a time for reaching the center of the GGPP of

q
c
\ R

o V o
\ 3c

s
4naGo

a
.

Because the terminal velocity depends on size, larger grains
will settle faster than smaller grains. This di†erential settling
will cause the larger grains to sweep up the smaller grains,
leading to growth of the grain mass at the ratem

a
dm

a
dt

\ na2o
d
o V o ,

where is the space density of dust grains, taken to beo
dsome fraction f of the gas density The character-(o

d
\ fo

p
).

istic growth time for a dust grain isq
a
\ m

a
/(dm

a
/dt)

q
a
\ c

s
nfo

p
GR

.

For R\ 0.5 AU (initially in the middle of the GGPP),
T \ 100 K, f\ 0.01, and g cm~3, the timescaleo

p
\ 10~8

for dust grain growth in mass by a factor of e is about 10 yr.
The maximum size a dust grain can grow to before reaching
the center of the GGPP is

amax\
fo

p
Rmax

4o
a

,

yielding m for AU and g cm~3.amaxD 1 Rmax\ 1 o
a
\ 3

The time to grow to size a starting from size isa
oFor km, centimeter-sized particlesD3q

a
ln (a/a

o
). a0\ 0.1

will form within D103 yr. Centimeter-sized particles can

then settle to the center of the GGPP in a time yr.q
c
D 103

Because both of these timescales are considerably shorter
than the D105 yr needed for the gaseous envelope to con-
tract, it appears to be quite likely that GGPPs will form
solid cores (Boss 1997b).

In addition to the settling of dust grains initially con-
tained within a GGPP, a growing GGPP can acquire
further solids by intercepting the radially inward Ñux of
particles that have coagulated outside its orbit. Cameron

showed that centimeter-sized particles would spiral(1995)
inward past radii of 5 AU in D105 yr, while meter-sized
bodies would be intercepted in D103 yr. Radially inward
orbital migration, caused by gas drag, could then feed addi-
tional material to a growing GGPP core, prior to the
GGPP reaching temperatures high enough to prevent sedi-
mentation of these solids to the core.

While the present models do not directly address this
issue, it should be emphasized that Uranus and Neptune
probably did not form by the GGPP instability mechanism
(cf. The falling surface density of the diskCameron 1978).
may lead to insufficient mass much beyond 10 AU for the
GGPP instability to operate, even at the inferred minimum
outer disk temperatures of 25È50 K (Mumma 1996).
Uranus and Neptune would then have to have formed well
after Jupiter and Saturn, and well after the residual solar
nebula had been removed, by the slow process of collisional
accumulation, as in the inner solar system.

5.5. Testing the GGPP Hypothesis
Finally, it is important to note that a deÐnitive test for

deciding between the core accretion and GGPP instability
mechanisms for giant planet formation is possible. As it is
presently understood (see, e.g., et al. the corePollack 1996),
accretion mechanism requires at least D106 yr to form 10

cores, and up to D107 yr for a core to accrete a massiveM
^gaseous envelope. Hence if giant planets form by core accre-

tion, they should not reach Jupiter mass until their stars are
D107 yr old. The GGPP instability, on the other hand, is
most likely to occur during the protostellar or very early
preÈmain-sequence phase of evolution, i.e., at ages of D105
yr. Nearby star-forming regions contain young stars with
ages in the range D105È107 yr. A search for signs of Jupiter-
mass companions to these young stars might then deÐne the
epoch of giant planet formation and so determine the
mechanism of their creation (Boss 1998b).

6. CONCLUSIONS

The results of this paper may be summarized in the
context of a list of the apparent advantages and disadvan-
tages of the GGPP mechanism for giant planet formation.

6.1. Advantages
The GGPP instability occurs quickly, within 103 yr, with

core formation occurring on a similar timescale, and with
envelope contraction to planetary densities occurring in
D105 yr. Giant planet formation could thus occur well
before the disappearance of the protoplanetary disk.

The mechanism appears to be capable of making fairly
massive planets. While the present models do not predict
the Ðnal giant planet masses, the production of D10 MJupGGPPs suggests that giant planets willmultiple-MJupresult. Lower mass disks should produce lower mass
GGPPs, though this remains to be studied.
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Ice and rock cores should be able to form inside Jupiter-
and Saturn-mass GGPPs with core masses comparable to
those inferred in recent models of giant planet interiors.

If GGPP formation is a natural occurrence in marginally
unstable disks, then a means for triggering the instability
may not be required.

Rapidly falling outer disk surface densities would mean
that GGPP formation could occur only in the ““ middle ÏÏ of
the disk, implying that both the terrestrial and icy outer
planets would have to form by the slow process of col-
lisional accumulation.

For the initial disk modeled here, GGPPs form in circu-
lar orbits with radii (D5 and D10 AU) similar to those of
Jupiter and Saturn.

Because GGPPs would form early in the evolution of
young stars, searches for Jupiter-mass companions to preÈ
main-sequence stars should be able to either conÐrm or
reject the GGPP formation mechanism.

6.2. Disadvantages
The present models assume the existence of a relatively

high-mass disk, with 0.13 within 10 AU. Evidence forM
_such massive disks is theoretical at present rather than

observational. The present calculations need to be repeated
for lower mass disks.

If GGPP formation does not occur as a natural outcome
of the evolution of marginally unstable disks, then the insta-

bility will require the existence of a suitable trigger, such as
nonsteady infall of gas onto the disk.

Giant planets formed by the GGPP mechanism will be
roughly solar in composition, unless their gas-rich outer
layers are partially removed after core formation occurs,
which would then produce metal-rich planets, or unless
inward radial migration of solids leads to signiÐcant metal
enrichment. Impacts of small bodies (e.g., comet
Shoemaker-Levy 9) might produce metal-rich atmospheres
if mixing is prohibited by radiative zones in the giant planet.

If the cores of the giant and outer planets turn out to be
nearly identical, in spite of the trends of recent interior
models, the GGPP mechanism would o†er no easy expla-
nation.

Undoubtedly other advantages and disadvantages of the
GGPP instability will become apparent as this mechanism
is further investigated.
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